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1 Introduction

The motivation for this project to understand finite simple groups which reveal more
information about all finite groups. Just like primes in number theory and atoms in
chemistry, finite simple groups are the building blocks out of which all finite groups are
made.

Comprehensive classification of finite simple groups is attributed to Daniel Gorenstein
in 1981, but it was not completed until revisions were made by Michael Aschbacher and
Stephen Smith to correct some errors in the proof [5].

2 Definitions and Classification

Recall that a subgroup H of a group G is called a normal subgroup of G if aH = Ha for
all a in G and is denoted H ◁ G. For every group G, the subgroups {eG} (the identity
subgroup) and G are normal in G. We say that a subgroup H is proper if H ≤ G and
H ̸= G.

Definition 2.1 (Simple Group [6]). A group is simple if its only normal subgroups are
the identity subgroup and the group itself.

In other words, none of the proper nontrivial subgroups of a simple group are normal.
A natural question then arises: is the group of order 1 simple? The group of order 1
contains only the identity element. Thus, this group has no proper nontrivial subgroups,
so there are certainly no normal subgroups. Hence, the group of order 1 is not simple
because by definition, a simple group must have exactly two normal subgroups.

2.1 Jordan-Hölder Theorem

Finite simple groups can be considered the building blocks for all finite groups, and they
can be determined in the following way: given a finite group G = G0, choose a proper
normal subgroup G1 ≤ G = G0 of largest order. Then the factor group G0/G1 is simple.
Then we choose a proper normal subgroup G2 ≤ G1 of largest order. Then G1/G2 is
simple and so on. The result is then Gn = {e}.
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Definition 2.2 (Composition Series and Factors [2]). Every finite group G with order
greater than one has a finite series of subgroups called a composition series such that

{e} = H0 ◁ H1 ◁ H2 ◁ · · · ◁ Hn = G

where Hi+1 is a maximal subgroup of Hi and H ◁G. Additionally, a composition factor
Hi+1/H is a simple group for 0 ≤ i ≤ k − 1.

A composition series can be thought of as a series where it is impossible to add a
new member which is distinct from all other members. The following theorem expands
on this idea.

Theorem 2.1 (Jordan-Hölder). Let G be a nontrivial finite group. Then the composition
factor belonging to two composition series of G are isomorphic in pairs. In other words,
let

G = K0 ◁ K1 ◁ · · · ◁ Kn = {e}
G = H0 ◁ H1 ◁ · · · ◁ Hm = {e}

be any two composition series for G. Then n = m, and corresponding to any composition
factor Kj/Kj+1, there is a composition factor Hi/Hi+1 such that

Kj

Kj+1

∼=
Hi

Hi+1
.

Sketch of proof. We use induction over the length of shortest composition series for G.
It is sufficient to show that any composition series is equivalent to a minimal series and
thus any two series are equivalent. For the base case, notice that if G is simple, then it
has a unique composition series G ◁ {e} and we are done. Also notice that if |G| = 2,
then the theorem is trivially true. Then for the inductive step, we define two composition
series

G = K0 ◁ K1 ◁ · · · ◁ Kn = {e}
G = H0 ◁ H1 ◁ · · · ◁ Hm = {e}

and consider two cases. If K = H, then it directly follows that the composition factors
are isomorphic in pairs and the theorem is true. For the case where K ̸= H, the proof
becomes more involved. We consider the group KH which contains K and H distinct
and maximal in G such that KH = G. Utilizing the first isomorphism theorem and the
fact that the composition factors are simple, we have that K ∩H is a maximum normal
subgroup in K and H. Then using the inductive assumption, the theorem is true for K
and H, so the composition factors are isomorphic in pairs and the theorem is true for
K ̸= H as well.

In terms of composition factors, this theorem states that these factors are independent
of the normal subgroups chosen. In addition, a group can be reconstructed from its
composition factors and many group properties are determined by its composition factors.
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2.2 Relation to Sylow Theory

We now use Sylow theory to draw some more conclusions about simple groups. First,
we give the relevant Sylow Theorem and its consequences.

Theorem 2.2 (Sylow’s Third Theorem [6]). Let p be a prime and let G be a group of
order pkm, where p does not divide m. Then the number n of Sylow p-subgroups of G is
equal to 1 mod p and divides m.

Corollary 2.2.1. A Sylow p-subgroup is normal in G if and only if it is the unique
Sylow p-subgroup.

We define np as the number of Sylow p-subgroups. Thus Corollary 2.2.1 is equivalent
to stating that np = 1.

Theorem 2.3 (Sylow Test for Nonsimplicity [6]). Let n be a positive integer that is not
prime, and let p be a prime divisor of n. If 1 is the only divisor of n that is equal to 1
mod p, then there does not exist a simple group of order n.

Sylow’s Third Theorem can be used to establish statements such as: there are no
simple groups of order k (for some k). To do this, we simply need to show that np = 1
for some p dividing the order of G. Thus from Corollary 2.2.1, the Sylow p-subgroup is
normal and the group has another normal subgroup besides itself and the trivial group.

Example 2.1. There are no simple groups of order 84.
Since |G| = 84 = 22 · 3 · 7, the Third Sylow Theorem tells us that n7 divides 22 · 3 = 12
so n7 ∈ {1, 2, 3, 4, 6, 12}. Additionally, we have that n7 ≡ 1 mod 7. Thus the only
possibility is that n7 = 1, so the Sylow 7-subgroup must be normal. Hence, any group
of 84 cannot be simple by definition.

Example 2.2. There are no simple groups of order 351.
Since |G| = 351 = 33 · 13, Sylow’s Third Theorem tells us that n13 divides 33 = 27
so n13 ∈ {1, 3, 9, 27}. Additionally, we have that n13 ≡ 1 mod 13. Thus the only
possibilities are n13 = 1 or 27. A Sylow 13-subgroup P has order 13 and a Sylow 3-
subgroup Q has order 33 = 27. Thus P ∩ Q = {e}. Suppose n13 = 27. Every Sylow
13-subgroup contains 12 nonidentity elements, so G must contain 27 · 12 = 324 elements
of order 13. This leaves 351 − 324 = 27 elements in G with order not 13. Thus, G
contains only one Sylow 3-subgroup, so G cannot be simple.

2.3 Classification

To broaden our understanding of finite simple groups, it is helpful not only to explain
why a group cannot be simple but also to see which groups classify as simple. The
classification of finite simple groups provides a complete list of all finite simple groups,
but contrary to the label of “simple groups,” there are infinitely many distinct finite
simple groups.

Theorem 2.4 (Classification of Finite Simple Groups). Every finite simple group is
(isomorphic to) one of the following:

1. Cyclic group Zp of prime order p
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2. Alternating group An for n ≥ 5

3. One of the 16 infinite families of groups of Lie Type

4. One of the 26 sporadic groups

3 Cyclic Groups of Prime Order

As a straightforward example, consider the cyclic group Zp, which are simply the integers
mod p with p prime.

Example 3.1. Consider the cyclic group G = (Z3,+), the group of integers under
addition modulo 3. To show that G is a simple group, we must show that its only
normal subgroups are the identity subgroup and the group itself. If H is a subgroup of
G, then its order must divide |G| = 3. Since p = 3 is prime, its only divisors are 1 and
3, so either H = G or H is the trivial (identity) group.

From this example, we can see that since p is prime, its only divisors are 1 and p.
Thus, from Legrange’s Theorem, a subgroup must either be the whole group or the trivial
group. This hints at the fact that primality is key to classifying abelian simple groups.

Theorem 3.1. Every abelian simple group is (isomorphic to) Zp.

Proof. ( =⇒ ) Let G be an abelian simple group. If a ∈ G is a non-identity element,
then ⟨a⟩ is a nontrivial subgroup of G. Any subgroup of an abelian group is normal,
so since G is abelian, ⟨a⟩ is a nontrivial normal subgroup of G. Then since G is also
simple, we must have that G = ⟨a⟩, or equivalently, G is cyclic. If G is infinite, then
G ∼= Z. Z contains proper nontrivial subgroups (i.e., ⟨a2⟩ ≤ ⟨a⟩ = G) so it is not simple.
Then G must be a finite cyclic group. If G ∼= Zn where n = ab for a ̸= 1, b ̸= 1, then G
contains a proper subgroup of order a. If G ∼= Zp where p is prime, then by Legrange’s
Theorem, the only subgroups are ⟨0⟩ and G, which implies that G is simple. Thus all
abelian simple groups are of the form Zp for p prime, up to isomorphism.
( ⇐= ) Suppose G is a group of prime order p and let a ∈ G be a nonidentity element.
Then ⟨a⟩ divides |G| and |⟨a⟩| = p since p is prime. Thus G = ⟨a⟩ so G is cyclic and
abelian. Since any normal subgroup of H ≤ G must have either order 1 or p, H must
either be trivial or all of G. Hence G is a simple abelian group, by definition.

While the cyclic group of prime order are straightforward to understand, non-abelian
simple groups are far more complicated.

4 Alternating Groups

The Alternating group of degree n is defined as “The group of even permutations of n
symbols is denoted by An.” in the textbook. Logically, they are the subgroup of the
Symmetry group Sn that consists all of the even permutations of Sn itself. Interestingly,
all Alternating Groups, An, are finite simple groups, with the exception that n = 4.
Here will we show that A4 is not simple and how An, n ≥ 5, is simple.

Theorem 4.1. Alternating group A4 is not simple
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Proof. We consider the subgroup H = [1, (12)(34), (13)(24), (14)(23)] in A4. We can
verify that this is a normal subgroup by knowing that conjugation (gHg−1 = H) does
not alter cycle structure. Outside of the identity element, all of the elements are products
of two disjoint transpositions and therefore must equal another product of two disjoint
transpositions. Therefore H is normal and A4 cannot be simple.

We can see H is normal by observing that it is isomorphic to the Klein 4-Group,
Z2 × Z2

Theorem 4.2. Every Alternating group of order n ≥ 5 is simple

Proof. We break up the proof into the following steps, as originally presented by Gregory
Constantine in [3]:

Step 1. An is generated by the 3-cycles. In fact An is generated by the n − 2 3-cycles
{(12k) : k ≥ 3}.
Indeed, any element of An is a product of transpositions of the form (ab)(cd)
or (ab)(ac). Since (ab)(cd) = (acb)(acd) and (ab)(ac) = (acb) we conclude
that An is generated by the 3-cycles. Furthermore, (1a2) = (12a)− 1, (1ab) =
(12b)(12a)−1, (2ab) = (12b)−1(12a), and (abc) = (12a)−1(12c)(12b)−1(12a),
which shows that every 3-cycle is generated by a cycle of the form (12k).

Step 2. If H is a normal subgroup of An and H contains a 3-cycle, then H = An.

Without loss (123) ∈ H. Then

(12k) = ((12)(3k))(123)−1((12)(3k))−1 = ((123)−1)(12)(3k) ∈ H,

by normality. Thus An =< (12k): all k ≥ 3 ≤ H, and H = An.

We now assume that H( ̸= 1) is normal in An. The idea is to show that H
contains a 3-cycle, necessarily. We then invoke Step 2 to conclude the proof.
Consider the exhausting possibilities examined below:

Case 1. Without loss assume thatH contains σ = (12 · · · r)τ, where r ≥ 4, and
τ is disjoint of {1, 2, . . . , r}. Then, by the normality of H, H contains
σ−1σ(123) = (12r). We are done by Step 2.

Case 2. Assume without loss that σ = (123)(456)τ ∈ H, where τ is a product
of disjoint transpositions. Then H contains σ−1σ(124) = (14263). We
are done by Step 1.

Case 3. Assume without loss that (123)τ ∈ H, with τ a product of disjoint
transpositions. Then H contains (123)τ(123)τ = (132), and we are
done by Step 2.

Case 4. Assume that H contains elements that are products of disjoint trans-
positions. Without loss let (12)(34)τ be such an element of H.

Then (12)(34)τ((12)(34)τ)(123) = (13)(24) ∈ H. Since n ≥ 5, con-
sider (123) ∈ An. By normality H contains (13)(24)((13)(24))(135) =
(135), and we are done by Step 2. This concludes the proof.
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This is a complex proof. In simple terms, it can be broken up as following:
Determine that for n ≥ 5, all elements of An are products of 3-cycles. All 3-cycles in An

are conjugate, and therefore are normal. For any An, this 3-cycle is the only nontrivial
normal subgroup. Thus, An is equal to the 3-cycle. An must then be a finite simple
group.

Example 4.1. Show A6 is finite simple

We set H to be the set of conjugacy classes,

H = [(1), (123), (123)(456), (12)(34), (12345), (23456), (1234)(56)].

(123) is the only 3-cycle element that is invariant under conjugation. The only normal
subgroups of A6 are (1) and elements in the form (123), so A6 is a simple finite group.

5 Sporadic Groups

5.1 Sporadic Groups

There are 26 finite simple groups that do not fit into any of the four infinite families of
finite simple groups (i.e., the cyclic groups of prime order, alternating groups of degree
at least five, Lie-type Chevalley groups, and Lie-type groups) which compose sporadic
simple groups. We provide a summary of these groups in table 1.

All of the 26 sporadic groups mentioned in table 1 have been proven to be a complete
list of all the sporadic groups which can be used to describe various groups in math-
ematics. In fact, all the finite simple groups were classified in a groundbreaking proof
presented as the Enormous Theorem in 2004 that took decades and hundreds of minds
to complete.

5.2 Sporadic Group Families

Despite being sporadic, all the sporadic groups can be classified into 3 major families
with 6 being the outliers. The classifications can be analyzed using the centralizers of
the groups or automorphisms in relation to the Monster group. Below is a detailed
representation of sporadic group families:

Figure 1: Families of sporadic groups.
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Table 1: Order of all groups belonging to the set of finite simple sporadic groups.

Name Order

Mathieu group M11 7920
Mathieu group M12 95040
Janko group J1 175560

Mathieu group M22 443520
Janko group J2 = HJ 604800
Mathieu group M23 10200960

Higman-Sims group HS 44352000
Janko group J3 50232960

Mathie group M24 244823040
McLaughlin group McL 898128000

Held group He 4030387200
Rudvalis group Ru 145926144000
Suzuki group Suz 448345497600
O’Nan group O′N 460815505920
Conway group Co3 495766656000
Conway group Co2 42305421312000
Fischer group Fi22 64561751654400

Harada-Norton group HN 273030912000000
Lyons group Ly 51765179004000000

Thompson group Th 90745943887872000
Fischer group Fi23 4089470473293004800
Conway group Co1 4157776806543360000
Janko group J4 86775571046077562880

Fischer group Fi′24 1255205709190661721292800
Baby monster group B 4154781481226426191177580544000000

Monster group M 808017424794512875886459904961710757005754368000000000
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5.3 Monster Group - The largest sporadic group

The Monster group is the largest of all the sporadic groups with order of

808017424794512875886459904961710757005754368000000000.

The group was originally predicted to exist in the early 1970s by B.Fischer and R.L.
Griess. The group describes symmetries of a 196883 dimensional object and each element
of the Monster group takes up about 4GB of computational space. In fact, R.A.Wilson
supplied two matrices that generate the monster group with each of the matrices taking
up about 5GB of space. Notice that there are many groups a lot larger than the monster
group, such as permutations of 101 objects, but their elements can be computed in just
a few seconds.
The monster group can be understood using the following statements:

• It is the largest sporadic simple group or alternatively, the unique simple group of
its order.

• It is the automorphism group of the Griess algebra.

• It is the automorphism group of the monster vertex algebra.

• It is a group of diagram automorphisms of the monster Lie algebra.

5.4 Sporadic groups outside of math

Despite the fact that we have not fully discovered applications of the monster group
or many other sporadic groups, the order of the monster group has appeared in other
fields. The first-ever appearance of the order of monster group appeared in In fact, the
monstrous moonshine theory appeared as a result of an unexpected connection between
the monster group and modular functions. It was proved by Richard Borcherds in 1998
for which he received the Fields Medal

5.5 Summary

While there are many sporadic groups, the most fascinating thing about them is the fact
that every single one has been proven to exist. Moreover, the potential applications of
these groups can shine a light on the connections between math and other sciences.

6 Groups of Lie Type

6.1 Lie groups and Lie algebras

Up to this point, groups have primarily satisfied a discrete representation. Whether or
not a group has been finite or infinite, it has typically appeared to be somewhat countable
set. For example, cyclic groups of prime order p can be described as a finite set of integers
mod p and the subgroup of triangle rotations in D3 occupy regular intervals of 120◦.

But what prevents groups from being (in some imprecise sense) granular? Take for
example the group of rotations of an equilateral triangles. Is the set of rotations still a
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group if we take rotations by arbitrarily small degree increments? Clearly not; purely
from geometric intuition, we see that the triangle no longer maintains symmetry. But
what if we observe a circle instead of a triangle? Suddenly, we find that its rotations do
appear to form a group, and in fact is true.

a
a+b

b

Figure 2: Circle group T, the additive group of rotations of a circle. This is a trivial
illustrative example of a Lie group.

Typically, the group of rotations of the unit circle is denoted by T. As we’ve sug-
gested, the introduction of arbitrarily small degree increments makes this group a bit
different from the groups we’ve seen previously. Beyond just having an infinite order,
we can observe that this group (purely geometrically) satisfies some interesting form of
continuous symmetry ; in some sense, the group seems to be continuous.

As we find, these concepts of continuous symmetries and continuous groups—known
as Lie groups—actually give way to rich theory that intimately connects abstract alge-
bra and topology. While we advise the curious reader to seek out a more formal and
precise introduction to this fascinating corner of mathematics, for the purpose of this
paper we will take a sufficiently abstract view. Our goal here is to provide a sliver of
intuition behind why these objects are fundamental to group theory and how (perhaps
paradoxically) their continuity gives way to a rich class of finite simple groups.

Definition 6.1 (Lie group [4]). A Lie group is a group that is also a finite dimen-
sional smooth manifold, in which the group operations of multiplication and inversion
are smooth maps.

Shortly after their discovery in the late 19th century by Sophus Lie, Lie groups
ushered in a split in group theoretic research. Group theorists focused on discrete groups
(of finite/infinite order) and continuous/Lie groups separately, but quickly found that
studying Lie groups could help towards understanding finite groups as well.

Just like their finite counterparts, Lie groups also give way to simple groups of the
same type—for this paper, it is not critical to understand the technicalities behind their
definition. Just like finite simple groups, classifying simple Lie groups was its own tech-
nical challenge and of independent interest. Following the classification of simple Lie
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Table 2: Classification of simple Lie groups and their corresponding Dynkin diagrams.

Classical

An Group of n × n unitary matrices
with determinant 1 (Special uni-
tary Group An = SU(n+ 1))

Bn Group of n × n rotation matrices
with determinant 1 (odd special
orthogonal groups Bn = SO(2n+
1)).

Cn (unitary simplectic groups)

Dn (even special orthogonal groups)

Exceptional

G2

F4

E6

E7

E8

groups by Killing in [9], group theorists began thinking about how their discovery could
be bridged to the world of finite groups.

Theorem 6.1 (Classification of simple Lie groups [9]). Every simple Lie group can be
classified as one of the four classical Lie groups (An, Bn, Cn, Dn) or one of five excep-
tional Lie groups (G2, F4, E6, E7, E8).

While the classical simple Lie groups had been known for centuries, the discovery of
5 new exceptional groups by Killing ultimately led to the full classification. Although
we will not go into depth into the methods of this classification, we point to table 2
and appendix A for insight into these groups’ structure. As we lack succinct geometric
interpretations, in appendix A we additionally describe how Dynkin Diagrams can help
us describe groups of Lie type (and Lie groups in general). Ultimately, the importance
of this classification arose from the discovery that these simple continuous groups gave
way to analogous finite simple groups.

6.2 Adjoint/untwisted Chevalley groups

In 1955, Chavelley’s seminal work [1] revealed the unexpected connection between con-
tinuous Lie groups and finite simple groups. Specifically, Chavelley showed that the
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simple Lie groups classified over a half-century prior had finite analogues. In almost all
cases, he found that simple Lie groups defined over finite fields would give way to another
(now finite) simple group. Since these groups were not quite Lie groups (by consequence
of their discreteness), they came to introduce the notion of a Lie-type group—frequently
constructed from a Lie group taken over a finite field. The specific subclass of finite sim-
ple groups originally described by Chavalley have come to be known as adjoint Chavelley
groups and would inspire further techniques and discoveries of other Lie-type finite simple
groups.

6.3 Adjoint twisted Chevalley groups

Following Chavalley’s discovery, many group theorists started looking to Lie groups and
Lie algebras as a means of finding new finite simple groups.

In 1959, five years since Chavalley’s paper, Robert Steinberg [11] modified Chavalley’s
techniques to cover a broader class of known finite simple groups and introduce a few
new finite simple groups. Namely, the groups 2An,

2Dn,
2E6, and

4D4. These came to
be known as the Steinberg Groups. From 1960-61, Michio Suzuki [12] and Rimhak Ree
[10] further modified these techniques to describe more finite simple groups: 2B2,

2F4,
and 2G2. The series of groups associated with 2F4 have an exception—the first group in
this series is not quite simple (denoted by 2F (2)). Jacques Tits studied the properties
of this group and found that its commutator subgroup was in fact simple. Denoted by
2F (2)′, this group would be known as the Tits group and is seen as a sort of “exceptional
Lie-type” group, in some sense.

6.4 Representations of finite simple groups of Lie type

Although almost all finite simple groups of Lie type do not have a simple (geometric)
interpretation, group theorists have found different ways of representing these objects.
Although for the purpose of this paper we will not go into depth about these repre-
sentations, we present a full classification in table 3. We further explain the chosen
representation (Dynkin diagrams) in appendix A.
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Table 3: Classification of finite simple groups of Lie type. Although there is no unified
notation, we denote some of these groups equivalently to their underlying Lie groups.

Adjoint Chevalley groups [1]

An Bn Cn Dn

G2 F4 E6 E7

E8

Twisted adjoint Chevalley groups

Steinberg [11]

2An
2Dn

2E6
4D4

Suzuki-Ree [12, 10]

2B2
2F4

2G2

Tits

2F (2)′

7 Conclusion

Finite simple groups are an interesting class of groups in which all finite groups are
comprised of. Many questions about finite groups can be reduced to questions about
simple groups, so determining and understanding all finite simple groups is crucial to
group theory. As a result, the complete classification of finite simple groups as mentioned
in Theorem 2.4 was a major breakthrough in group theory. In the realm of abelian
groups, Theorem 3.1 is interesting since we can classify all abelian simple groups being
isomorphic to Zp where p is prime.
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Appendices

A Simple groups of Lie type

A.0.1 Lie algebras and Dynkin diagrams

We take a brief detour to discuss how we can visualize the structure of finite simple
groups of Lie type. In the world of Lie groups, we typically run across the notion of a
Lie algebra. While it is not critical to fully understand how these objects behave, we can
picture a Lie algebra as follows: if we imagine a Lie group as the differentiable manifold
it describes, its associated Lie algebra will be the tangent space at the identity of the
Lie group. In the case of T, we can see that this is the tangent line at point (1, 0) on the
complex plane (see fig. 2).

It is customary to use Fraktur characters like g and h to denote Lie algebras.

Definition A.1 (Lie algebra [8, 7]). A Lie algebra is a vector space g over a field F
with an operation [·, ·] : g× g → g which we call a Lie bracket, such that the following
properties are satisfied:

1. It is bilinear, implying

[ax+ by, z] = a [x, z] + b [y, z]

[z, ax+ by] = a [z, x] + b [z, y]

for all scalars a, b ∈ F and all x, y, z ∈ g.

2. It is skew symmetric, implying [x, x] = 0 and equivalently [x, y] = − [y, x] for all
x, y ∈ g.

3. The Jacobi identity holds:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g.

Importantly, any Lie group we observe will have an associated Lie algebra. Given
that this Lie algebra is built upon purely linear operations, it is often more convenient to
work with than the Lie group itself. While there exists many different ways to represent
these algebras, a common approach is using root systems. Although we will not be
going over root systems here, they give way to a finite-graph representation of the Lie
algebra through a Dynkin diagram—a type of graph with singled/doubled/tripled edges
and sometimes is directed (the definition of such a graph is somewhat ambiguous in the
literature.

Although Dynkin diagrams are far from the most descriptive representation of Lie
structures, they remain as easily-identifiable ‘fingerprints’ for Lie algebras. In the case
of finite simple groups of Lie type, they appear as the identifiers of the Lie algebra
associated with the underling Lie group.
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