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Introduction
Motivation

Monthly Closing Price and Returns of NASDAQ (1985−2023)

Index

0 100 200 300 400

0

3000

6000

9000

12000

15000

P
ri

ce
 (

U
SD

)

−0.30

−0.15

0.00

0.15

lo
g−

re
tu

rn

NASDAQ NASDAQ Returns



Introduction
Motivation

Asset behavior

▶ Periods of intense growth or depreciation

▶ When to enter a position? When to exit?

▶ Risk
▶ must weigh potential gains against potential losses of a

(financial) decision

▶ Volatility
▶ intuitively, periods of high fluctuation appear to be less

predictable
▶ volatile =⇒ uncertain?

▶ TLDR; it is important to model risk!
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Motivation

How do we quantify risk?

▶ Many models have been presented
▶ Variance found to be strong indicator

▶ CAPM Model (Sharpe, 1964)
▶ Black-Scholes Model (Black & Scholes, 1973)

▶ volatility of an asset commonly expressed through the std of
the series
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Introduction
Motivation

Can we use a time series to model volatility?

▶ Usually, we assume constant
unconditional variance over a period
▶ realized volatility
▶ for stationarity

▶ Actual volatility is latent, not directly
observable
▶ Main Observation: volatility is

constantly fluctuating

▶ In the seminal work of Engle (1982)
▶ model volatility as a time-varying process
▶ modeling of residual series

▶ Recall, we model volatility through
std/variance

Robert Engle
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Model Structure
Building an ARCH-type model

Building an ARCH-type model for stationary time series Xt :

1. Break into mean and innovation (residual) processes

Xt = µt + ϵt

2. Removal of mean process µt through ARMA process

3. Identify ARCH process in residual series

4. Selection of ARCH-model type

5. Model construction and joint parameter estimation



Identifying Mean Process
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We opt not to break this process into mean/innovation.1

1We also notice from the ACF that we do not need to remove the mean
process in this data set. Already no serial correlation and stationary (see report
for further details).



Our Data



Classification of ARCH-type Models
Identify an ARCH process

Properties we look for in an ARCH process:

1. Unpredictability/conditional heteroskedasticity

2. Volatility Clustering

3. Leptokurtic



Classification of ARCH-type Models
Unpredictability
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Classification of ARCH-type Models
Volatility Clustering



Classification of ARCH-type Models
Leptokurticity
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ARCH Model

Consider (residual) series {ϵt} exhibiting ARCH-process behavior.

Definition
An autoregressive conditional heteroskedasticity (ARCH(m)) model
expresses the variance σ2 of ϵt as an AR process of ϵ2t :

σ2
t = α0 +

m∑
i=1

αiϵ
2
t−i

Definition
A Generalized-ARCH (GARCH(m, s)) model is one of the form
expresses the variance σ2 of ϵt as an ARMA process of ϵ2t and σ2

t :

σ2
t = α0 +

m∑
i=1

αiϵ
2
t−i +

s∑
i=1

βiσ
2
t−i
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ARCH Models
strengths and weaknesses

Why or why not GARCH and ARCH models?

▶ Symmetric Volatility Shocks

▶ Conditional Heteroskedasticity

▶ Aforementioned patterns are modeled



ARCH Model
Parameter selection

▶ Several different methods to select order of (G)ARCH model
▶ For big enough samples, PACF of the squared ARCH-series is

enough to estimate ARCH order
▶ GARCH(1,1) and other low-order models have been

experimentally found to frequently outperform larger-order
GARCH models (Jafari et al., 2007)

▶ Will not discuss further in this talk

▶ Parameter estimation and likelihood function depends on the
assumed distribution of residuals of (G)ARCH model
▶ Will not discuss in this talk
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Model Diagnostics and Forecasting

We compare performance of ARCH(1), ARCH(2), ARCH(3),
GARCH(1,1), GARCH(1,2), GARCH(2,1) models:2

AIC BIC

ARCH(1) -2.795142 -2.768110
ARCH(2) -2.826293 -2.790251
ARCH(3) -2.850076 -2.805023
GARCH(1,1) -2.864962 -2.828919
GARCH(1,2)∗ -2.859456 -2.814403
GARCH(2,1)∗ -2.859487 -2.814434

Table: Model comparison on NASDAQ historic monthly log returns. All
models are fitted under normal standardized residuals.
∗Some parameters are found to be insignificant. We leave them in the model for the moment.

2Note that for this sample data we do not have any autocorrelation and
thus do not need the ARMA piece of the final joint parameter estimation.
Thus all candidate models are ARMA(0,0)-(G)ARCH.



Fitted Model and Forecasting
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Figure: Two conditional SDs of fitted GARCH(1,1) model.



Fitted Model and Forecasting

Our model:

µ = 0.00964380

and

σ2
t = 0.00025769 + 0.14500309ϵ2t−1 + 0.79402682σ2

t−1



Fitted Model and Forecasting

mean meanError sd lower upper

1 0.0096 0.0665 0.0665 -0.1206 0.1399
2 0.0096 0.0664 0.0664 -0.1204 0.1397
3 0.0096 0.0663 0.0663 -0.1203 0.1396
4 0.0096 0.0662 0.0662 -0.1201 0.1394
5 0.0096 0.0661 0.0661 -0.1200 0.1393

Table: GARCH(1,1) forecast of monthly NASDAQ log-returns for next 5
time steps (summary of R output)



Any questions?
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